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I. NOTATIONS

Spinor helicity is a very useful formalism to present both massless and massive kinematics.

In this formalism, the polarization vectors have a particularly simple form. The famous BCFW

recursion relation also becomes manifest. Spinor helicity is a basis language of modern scattering

amplitude.

We start from 4D massless (null) vectors’ spinor helicity formalism. Since any massive vector is

a linear combination of two massless vectors, this formalism is also useful for massive kinematics.

Spinor helicity formalism is complicated for D > 4.

Through this course, we use

(+,−,−,−) (1)

for the Minkowski spacetime signature (West coast convention, same as that in Peskin-Schroeder’s

QFT book).

For a null vector pµ = (p0, p1, p2, p3), p
2 = 0, we derive the spinor helicity representation. The

four-component Pauli matrices are defined as,

σ0
αβ̇

=

 1 0

0 1

 , σ1
αβ̇

=

 0 1

1 0

 , σ2
αβ̇

=

 0 −i

i 0

 , σ3
αβ̇

=

 1 0

0 −1

 . (2)

These four matrices transfer under the Lorentz group as a four-vector.

The contraction

pαβ̇ ≡ pµσ
µ

αβ̇
=

 p0 − p3 −(p1 − ip2)

−(p1 + ip2) p0 + p3

 =

 p− −p⊥−
−p⊥+ p+

 . (3)

where

p± = p0 ± p3, p⊥± = p1 ± ip2 (4)

Question Prove that det(pαβ̇) = 0 if p2 = 0.

Since det(pαβ̇) = 0 for a null vector, from basic linear algebra

pαβ̇ = λαλ̃β̇ (5)
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where λα and λ̃β̇ are holomorphic and anti-holomorphic Weyl spinors.

Although the explicit component form of λα and λ̃β̇ are not needed in most cases, we give the

following explicit form,

λα ≡

 −zp⊥−/√p+
z
√
p+

 , λ̃β̇ ≡
(
−p⊥+/(z

√
p+)

√
p+
z

)
, (6)

where z is a unfixed parameter since this decomposition is not unique. In other words, we have

the freedom,

λα → tλα, λ̃β̇ → t−1λ̃β̇, (7)

This is just the little group action on the null vector p. Based on this symmetry, we see that the

value of z is not fixed.

However, in some cases, we still want to fix z for convenience. For example, when p is a real

null momentum and p+ > 0, we can set z as a complex phase such that |z| = 1. In this case,

λi = (λ̃i)
∗, i = 1, 2 (8)

where ∗ stands for the complex conjugate. However, since we are interested by the holomorphic

properties of amplitudes, we usually avoid this choice.

Another choice is to set z =
√
p+. By this choice, the apparent square root disappeared.

As usual, we use anti-symmetric matrix

σαβ =

 0 1

−1 0

 , σα̇β̇ =

 0 1

−1 0

 , σαβ =

 0 −1

1 0

 , σα̇β̇ =

 0 −1

1 0

 (9)

to raise and lower the spinor indices,

λα = εαβλβ, λα = εαβλ
β, λα̇ = εα̇β̇λβ̇, λα̇ = εα̇β̇λ

β̇ . (10)

II. SPINOR PRODUCTS

In the section, we consider a list of null vectors pi, i = 1, . . .. For the vector pi, we denote λ(pi)

as λi.

For two null vector pi and pj , the spinor products are defined as

〈ij〉 ≡ λαi λj,α (11)

[ij] ≡ λ̃i,α̇λ̃α̇j (12)
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Note that this definition is sensitive to the order of the spinors.

〈ij〉 ≡ εαβλi,βλj,α = εβαλi,αλj,β = εβαλj,βλi,α = −εαβλj,βλi,α = −〈ji〉 . (13)

Similarly, [ij] = −[ji]. It is clearly that 〈ij〉 = 0 and [ij] = 0.

Note that because of the little group action in (7), neither 〈ij〉 nor [ij] is uniquely defined.

For further discussion, we need to introduce the σ̄ Pauli matrices,

σ̄0,α̇β =

 1 0

0 1

 , σ̄1,α̇β = −

 0 1

1 0

 , σ̄2,α̇β = −

 0 −i

i 0

 , σ̄3,α̇β = −

 1 0

0 −1

 . (14)

These matrices are related to the original Pauli matrices by,

σ̄µ,β̇δ = εδαεβ̇α̇σµαα̇ . (15)

When there is no confusion, we may drop the spinor indices, and simply rewrite the above formula

as

εσµεT = (σ̄µ)T (16)

where ε = iσ2 is the 2× 2 matrix εαβ. We have the Pauli matrix orthonormal relation,

Tr(σµσ̄ν) = Tr(σ̄µσν) = 2ηµν , σµ,αα̇σ̄
µ,β̇β = 2δβαδ

β̇
α̇ (17)

One application is that we can use the orthonormal relation to recover the original null vector

pi from the spinors. (Here λ stands for λα, and λ̃ stands for λ̃β̇,)

pνi =
1

2
(λ̃i,β̇σ̄

ν,β̇αλi,α) =
1

2
(λ̃iσ̄

νλi) . (18)

Similarly, we may construct new null vectors as,

(λiλ̃j)
ν =

1

2
(λ̃j,β̇σ̄

ν,β̇αλi,α) =
1

2
(λ̃j σ̄

νλi) . (19)

It is clear that (λiλ̃j)νσ
ν
αβ̇

= λi,αλ̃j,β̇. Note that pνi = (λiλ̃i)
ν .

One important identity is that

2(λiλ̃j)
µ(λkλ̃l)µ = 〈ik〉[lj] (20)

It is easy to prove this identity by the standard Pauli matrix identities.

〈ik〉[lj] = (εαβλi,βλk,α)(εα̇β̇λ̃l,α̇λ̃j,β̇) (21)

= (λTk ελi)(λ̃lελ̃
T
j ) = (λTk ελi)(λ̃jε

T λ̃Tl ) (22)

= (λiλ̃j)µ(λTk (σ̄µ)T λ̃Tl ) = (λiλ̃j)µ(λ̃lσ̄
µλk) (23)

= (λiλ̃j)µ(λkλ̃l)ν Tr(σν σ̄µ) = 2(λiλ̃j)
µ(λkλ̃l)µ . (24)
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III. IDENTITIES

• Schouten Identity.

〈ij〉〈kl〉+ 〈jk〉〈il〉+ 〈ki〉〈jl〉 = 0 (25)

It is easy to prove this identity by a simple expansion.

λi = c1λj + c2λk (26)

From the spinor products, we have

〈ij〉 = c2〈kj〉, 〈ik〉 = c1〈jk〉, (27)

Hence

〈il〉 = c1〈jl〉+ c2〈kl〉 =
〈ik〉
〈jk〉
〈jl〉+

〈ij〉
〈kj〉
〈kl〉 (28)

This is a very useful identity.

Note that since Schouten identity is a quadratic relation for 〈〉 and [], it is not clearly how

to eliminate dependent spinor products by naively using this identity.

• Momentum Conservation. Suppose that we have a scattering process of n massless particles.

p2i = 0 and
∑
pi =, i = 1, . . . n. Then we have

n∑
i=1

〈ik〉[ji] = 0, ,∀k, j (29)

Note that the identity contains n− 1 terms if k = j, or n− 2 terms if k 6= j.

Again this is a quadratic relation for 〈〉 and [], it is not straightforward to use this identity.

• For four null vectors pi, pj , pk and pl, we have

〈ij〉[jk]〈kl〉[li] = 2(pi · pl)(pj · pk) + 2(pi · pj)(pk · pl)− 2(pi · pk)(pj · pl)− 2iε(i, j, k, l) (30)

where ε(i, j, k, l) = εµ1µ2µ3µ4piµ1pjµ2pkµ3plµ4 . εµ1µ2µ3µ4 is the totally antisymmetric tensor.

This identity is from the Pauli matrix identities.

Tr(σµσ̄νστ σ̄ρ) = 2(ηµνητρ + ηµρηνρ − ηµτηνρ + iεµντρ) (31)

ε(i, j, k, l) appears in amplitudes frequently. It is Lorentz invariant but partiy-odd.
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We may further define that for any four vectors {e1, e2, e3, e4}, a 4×4 matrix G(e1, e2, e3, e4),

G(e1, e2, e3, e4)ij ≡ ei · ej . (32)

Its determinant is g(e1, e2, e3, e4) = detG(e1, e2, e3, e4). G is called the “Gram matrix” of

{e1, e2, e3, e4}. g(e1, e2, e3, e4) is clearly Lorentz invariant and partiy-even. Furthermore, we

have,

g(e1, e2, e3, e4) = −ε(i, j, k, l)2 . (33)

IV. APPLICATIONS

Polarization. Consider a gluon or photon with the momentum pi, p
2
i = 0. One big advantage

of spinor helicity formalism is to construct the polarization vector, with specific helicity.

εµi,+ =
√

2
(λkλ̃i)

µ

〈ki〉
, εµi,− =

√
2

(λiλ̃k)
µ

[ik]
(34)

Then it is easy to check that

pi · εi,± = 0, ε2i,± = 0, εµi,+εi,−µ = −1 (35)

The completeness relation reads,

εµi,+ε
ν
i,− + εµi,−ε

ν
i,+ = −ηµν +

pµi p
ν
k + pνi p

µ
k

pi · pk
(36)

Exercise For the four-point massless kinematics, try to convert

〈12〉〈34〉
〈13〉〈24〉

(37)

to a function of Mandelstam variables.

Solution We use the spinor product formula (30).

〈12〉〈34〉
〈13〉〈24〉

=
〈12〉〈34〉[31][42]

s13s24
=
〈21〉[13]〈34〉[42]

s13s24
(38)

=
s12s34/2 + s24s13/2− s23s14/2

s13s24
=
s2/2− t2/2 + (s+ t)2/2

(s+ t)2
(39)

=
s

s+ t
(40)

We see this computation is not straightforward. For more complicated spinor functions, the

simplification will be more involved. Hence we introduce the modern method, “momentum twistor”

for these computations.
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